In three new independent studies, researchers have deepened our understanding of the remarkable ability of some specialized areas of the brain to activate both in response to one's own actions and in response to sensory cues (such as sight) of the same actions perpetrated by another individual. This ability is thought to be based in the activity of so-called mirror neurons, which have been hypothesized to contribute to skills such as empathy, socialized behavior, and language acquisition. The new findings contribute to our understanding of how conceptually related instances of language and action, and sound and action, are linked in the brain, and how the brain distinguishes actions perpetrated by "self" and by "other."
Mirror neurons were first identified in the cortex of macaque monkeys: A particular subset of these neurons fire when, for example, a monkey picks up a banana, and when the monkey observes a human picking up a banana in a similar way. Mirror-neuron activity appears to be highly specific, such that a somewhat different set of mirror neurons would fire if a banana were poked, for example, rather than picked up. There is also evidence that mirror neurons link actions not only with visual stimuli, but also with other types of sensory cues. Technical limitations have impeded identification of individual mirror neurons in humans, but brain-imaging studies support the existence of these neurons.
In the new work from Lisa Aziz-Zadeh and colleagues, researchers used a brain-imaging technique to investigate how literal phrases describing actions performed by the mouth, hand, or foot influenced cortical neurons that are activated by the sight of actions being performed by mouth, hand, or foot. The researchers found a significant concordance between activation of certain cortical areas in response to linguistic descriptions and observed actions relating to the different body parts carrying out the actions. For example, when individuals read literal phrases such as "biting the peach" or "biting the banana," some brain areas activated that were also stimulated by videos of fruit being bitten. Similar findings were obtained for hand actions (for example, grasping a pen) and foot actions (for example, pressing a piano pedal). Together, the findings suggest that mirror neurons play a key role in the mental "re-enactment" of actions when linguistic descriptions of those actions are conceptually processed.
In the study reported by Christian Keysers, Valeria Gazzola, and colleagues, researchers investigated a different question: how mirror neurons might contribute to our understanding of auditory cues. Past work had shown that in monkeys, so-called auditory mirror neurons activate when monkeys perform certain actions and when they hear the same actions being performed. In the new work, the researchers report new evidence for an auditory mirror system existing in humans as well. Intriguingly, the researchers also found that of the subjects taking part in the experiment, those that scored higher on tests for empathy activated the system more strongly than those who scored lower on the empathy evaluation. While the relationship between motor mirror systems and empathy skills is far from clear, these findings are consistent with the existence of a link between the two.
Though mirror neurons appear to relate--and, potentially, equate--the actions of oneself with those of another, we are in fact highly adept at distinguishing our own actions from those of someone else. The basis for this distinction is explored in the study reported by Simone Schütz-Bosbach, Patrick Haggard, and colleagues, who used an established method--the so-called rubber-hand illusion--for experimentally manipulating the sense of body ownership.
Taken together, the findings indicate that the observation of others facilitates the motor system. The authors point out that the findings also suggest that the neural mechanisms that underlie action observation are intrinsically "social" --that the neural mechanisms map the actions of others onto one's own body, rather than initially treating all observed action (whether perpetrated by one's self or by others) as essentially neutral in ownership. These findings inform our understanding of the motor system's role in social cognition, and support previous suggestions that the motor system may have strongly influenced developments in human social evolution. >from *Mirrors in the mind: New studies elucidate how the brain reflects onto itself the actions of others*. September 18, 2006
related context
> beauty and the brain. 'what you like is a function of what your mind has been trained on. a stimulus becomes attractive if it falls into the average of what you’ve seen and is therefore simple for your brain to process. we can make an arbitrary pattern likeable just by preparing the mind to recognize it quickly.' september 26, 2006
> mental link between actions and words. 'what is the difference in our minds between talk and action?.' september 18, 2006
> mirror neurons. 'a set of neurons in the premotor area of the brain that are activated not only when performing an action oneself, but also while observing someone else perform that action.' march 11, 2005
> brain region learns to anticipate risk, provides early warnings. february 17, 2005
> others' intentions. march 5, 2004
> eye gaze direction: how the brain perceives emotion. june 13, 2003
imago
> the actions of others onto one's own body
sonic flow
> ...from those of someone else [stream]
...from those of someone else [download]
| permaLink